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First-Order Bragg Interactions in a

Gyromagnetic-Dielectric Waveguide

MAKOTO TSUTSUMI, MEMBER, IEEE

,4 bstract— First-order Bragg interactions in a gyromagnetic-dielectric

waveguide are investigated theoretically. Witfr the aid of a singular per-

turbation procedure the coupled mode equations governing the nature of

transverse electric wave interactions are derived. Bragg reflection char-

acteristics are showu rmrnericatly as a function of the magnetic field.

I. INTRODUCTION

Bragg interaction in a planer dielectric waveguide whose prop-
erties vary periodically is very interesting topic from both practi-
cal and theoretical points of view [1]. Recently Seshadri has
investigated asymmetric first-order Bragg interactions in a active
dielectric waveguide by a singular perturbation procedure using
multiple space scales [2]. The author has also studied the reflec-
tion of millimeter wave by a corrugated dielectric slab using a
singular boundary procedure, and has confirmed the theoretical
results by experiments [3].

This short paper investigates Bragg reflection characteristics in
a gyromagnetic-dielectric waveguide whose refractive indexes vary
sinusoidally in the direction of the wave propagation. Reflection
characteristics in such a waveguide will be more sensitive to the
change of the magnetic field than that of a corrugated
gyromagnetic slab [4]. With the aid of a singular perturbation
procedure using multiple scales the coupled mode equations are
derived, and Bragg reflection characteristics as a function of the
magnetic field are shown numerically.

II. ANALYSiS BY A SINGULAR PERTURBATION PROCEDURE

A cross-sectional view of the geometrical configuration and the

system of coordinate used for the analysis are shown in Fig. l(a).

The permeability and permittivity of the slab have a sinusoidal

variation in they direction, a surface of the slab is grounded by a

metal plate, and the biasing magnetic field H, is applied to the z

direction. Such a slab structure can be realized by arranging a

ferrite slab and a dielectric slab alternatively, and some chemical

resins may be used for bonding these slabs, as shown in Fig. l(b).

In millimeter-wave frequency the permeability tensor of the

ferrite medium will be nearly equal to unity. At frequency 50

GHz with the magnetic field 5 Kg the diagonal and nondiagonal

components of the ferrite medium (YIG) are 1.03 and 0.1,
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Fig. 1 System of coordinate used for analysis and structure of the periodic

gyromagnetic-dlelectnc waveguide.

respectively [5]. Under this approximation the sinusoidal varia-
tion of the permeability tensor is assumed as

‘(’)=’O[’-?‘$!! ‘1)
where

8p= 8jicos Ky

8n=8iicos Ky

(YPO )2W~=
(ypolli)z-k+

and K= 2w-/A.

8 represents a formal expansion parameter [2], [6], and [7] and

A is the periodicity of the sinusoidal variation of the permeabil-

ity. The sinusoidal variation of the perrrtittivity is also assumed as

t=cf(l+8qcos Ky). (2)

In the above equations it is assumed that 8$, 8ii, and 8q are so

small that only the first-order effect of the &usoidal variation of

the refractive indexes will be taken account.

We assume that the waves do not vary in the direction of the

bias field ( ti/ilz = O) and that they vary sinusoidally with time

and angular frequency w, (exp ( –jo t)). The perturbed electric

fields due to a sinusoidal variation of indexes can be expressed as

Ez=E20(x, yo, y,)+& Yzl(x, yo, y,)

Ez=E-zo(x, yo, y1)+&7z,(x, yo, y1) (3)

where E,O and ~ZO are the unperturbed zero-order fields in the

slab and the vacuum, respectively, EZ, and EZ, are the first-order

correction terms due to the slight perturbation, and they are

function of y. =y and y, = r$y [6]. The angular frequency u in the

vicinity of the Bragg frequency O. can be expanded as

m=oo+tia,. (4)

The chain rule of the differentiation yields [6]

aiay= alayo+aa/ay,. (5)
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Substituting (l)-(5) into Maxwell’s equations and equating the
coefficients of equal powers of 8 on both sides, the foIlowing
Helmholtz equations can be obtained:

a*E,o/ax* +a*E,#3yj +t.$.qffll. o=o (6)

L32E.,\&t2 + ~2Eg, /~yj +w:pocf E:,

‘- {2a*E20/ayo8y,+ L@;pocfEzo.osKY

+Ksin Ky(iii3,?3,0/~yo +jiKJEzO/~x )

+@olJotf (%Tfcos KY+2%)E,o}. (7)

Hehnholtz equations in the vacuum region can be obtt@ed from

(6) with E,O=~ZO, (f ‘(0 and (7) with Ez, ‘EZO, E,, ‘E,,, cf ‘co,

and ~= F=q=O.

The zero-order field solution of (6) satisfying the boundary

condition at infinity (x= + m) can be assumed to have the

superposition of the forward and backward waves:

~z, = Co+ sin kx+ d.e~+td–xjeJ~+YO +CO– sin kx–d. eY-(d–x)e–Jfl ‘YO

E=, = Co+ sink: .x ~eJo ‘YO+ Co– sin kX– x. e ‘Jfl J’o (8)

where
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conditions for the first order are expressed in term of exp ( ~j~y):

F, –sifi k,d. Cl =P~

yFl + COS kXd. kXCl = p2& (12)

where

dsin kXd

{–

~j~ act~;=
ay, —@l@oPo~oco=

‘Y 1

+ dcos kyd

{

ac;
kX

—+@ ,mopoc,co’*JP ayl
1

dcos kXd

+ 4kX { -(
u~pocfq—p K&@~Poff )}C;

~~dsin Kxd.co+

sin kXd
~;=

{ 1

w +UlUopoCoC: (1 –yd)
Y

*jB ~y,

+y~sinkXd-C~

+ ~ (COSkXd–kXdsin kXd)
x

{
Y*= (&)2 -u;poco.

In the above expressions, the superscript + and – on the wave

amplitude Co and the propagation constant /2 indicate the for-

ward and the backward waves, respectively.

On a slab whose boundary surface is open to vacuum, the

tangential component of the electric field E,,, (E=, ) and the

magnetic field H,,, ( HY, ) must be continuous across the boundary

surface of x= d. Also the tangential component of the electric

field must vanish at the metal boundary of x=O; E=O, E,, =0.

Substituting (8) into boundary conditions, we get the zero-order

dispersion relation of TE waves in dielectric image line [8]:

tmk2d=_g
x (9)Y*.

In general then th harmonic wave propagating through a periodic

structure couples primarily to the (n — I)th harmonic and indi-

rectly to others. Thus the coupling to the higher harmonics is

neglected, and attention is concentrated on the vicinity of the

symmetric Bragg coupling region where n = O and n = — 1 space

harmonics intersect each other. The relation between the propa-

gation constant (1+ and /3 – of n = O and n = — 1 modes, respec-

tively, at the interaction point, is given by

/3h=fl-=&K/2. (lo)

The first-order perturbed fields E=, and ~z, are assumed to be

in the form

Zz, =g+(x)eJ6-”0 +g–(x)e–JPY0

E,, =f+(x)eJ@-’O +f–(x)e–JPJ’O. (11)

Substituting (8) and (11) into the first-order Helmholz equation

(7) and using the orthogonality relations of the Floquet modes

exp ( j/3 ‘y) and exp ( –j~ ‘y) with the help of (10), we obtain the

solutions of the first-order Helmholz equation. Substituting (8)

and (11) into boundary conditions satisfied by E,, and HY,, and

with the help of (10), g(x) and j(x) at x=d, the boundary

+ $Co’ (K~– u~pocf )}

(
+ ~ kxG + ~kxCo=

)

@
.coskxd –—sin KXd. Co”

+2

~~k (sin kXd+dkXcos kXd)Coz.

Eliminating constants F, and Cl in (12) by using the zero-order

dispersion relation (9), we get the coupled mode equations for the

Floquet modes exp ( J3y) and exp ( –j/3y) as

ac; _u,Co++jvg ~ —cco–

aco-
‘~~g aylW,co– — = Cco+ (13)

where

In the above equations Og is the group velocity obtained by

differentiating (9) with respect to Uo. In the limiting case where

the q becomes zero in (13), the coupling coefficient is only a

function of ~. In this condition Bragg reflection characteristics

will be very sensitive to the change of the magnetic field.

III. NUMERICAL EXAMPLES AND DISCUSSIONS

If the waves having amplitude Co in (13) have the form of

Cmexp ( j~l y), the first-order dispersion relation in the vicinity of

the symmetric Bragg interaction can be obtained [2]. The typical
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Fig. 3 Bragg reflection characteristics as a function of the magnetic field.

Brillouin diagram calculated from the first-order dispersion rela-

tion is presented in Fig. 2 for various values of the modulation

index of the permittivity and the magnetic field. In this figure,

Bragg interaction point ( ~0, /3.) is estimated from the zero-order

dispersion relation (9) of the fundamental mode of TE waves.

The material constant used for numerical computations are (,/( ~

= 15.7, d=2.O mm, pOM= 1890 G, y= 1.76x 1011 (Wb/m2s)-’

and A= 0.794 mm, where the penodicity A is given by A= n-/@.,

(~o=3.957X 103 m-’ for~o=oo/(2r)=50 GHz). It can be seen
from Fig. 2 that the stop bandwidth of the range from 2.5 to 3.2

GHz for q= 0.1 changes if the magnetic field is varied from zero

to 5 kG, as also the complex value of the propagation constant as

shown by dashed lines.

The present theory is based on the assumption that the

sinusoidally modulated refractive index is of infinite length. If the

end effects are negligible, we can apply this theory to the mod-

ulated refractive index of infinite length.

Let us assume that a TE wave is incident on the modulated

refractive index region at y= O and that a wave is partly trrms-

mitted through the modulated refractive index region at y= D.

The reflection coefficient I’ can be derived from the solution of

the boundary conditions at propagation direction [7], The reflec-

tion coefficient is estimated numerically as a function of the

frequency and the magnetic field. The result is shown in Fig. 3.

The material parameters used for calculation are the number of

the modulated index N= 100, q =0,02, and d= 2.0 mm. It is

interesting to note that the stop bandwidth of about 1.2 GHz of

the reflection (filter) characteristics and the return loss can be

controlled by the dc magnetic field, and their characteristics have

not been found for the corrugated gyromagnetic slab [4].

The coupling mode equations for asymmetric Bragg interaction

can be derived in the same way as that for symmetric interaction
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[2]. But we have found that the asymmetric interaction is not

sensitive to the change of the magnetic field.

IV. CONCLUSION

First-order Bragg interaction in a gyromagnetic-dielectric

waveguide is analyzed by a singular perturbation procedure. The

expression for the dispersion relation in the vicinity of the Bragg

frequency is derived. The Bragg reflection characteristics are

shown numerically, It is found that the stop bandwidth and

maximum decay of waves due to Bragg interaction can be con-

trolled by the magnetic field.

The result given in the present paper may be useful designing

millimeter-wave devices such as tunable filters and electrically

scannable leaky wave antenna [9].
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Microwave Pulse-Induced Acoustic Resonances in

Spherical Head Models

RICHARD G. OLSEN AND JAMES C. LIN, SBN1ORMEMBER,IEEE

Abstract — Microwave-induced acoustic pressures in spherical models of

human and animaf heads are measured using a small hydrophore trans-

ducer. The measured acoustic frequencies that correspond to mechanical

resonance of the head model agree with those predicted hy the thermoplas-

tic theory of interaction. Further, a three-pulse burst applied at appropriate

pulse repetition frequencies could effectively drive the model to respond in
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such a manner that the microwave-induced pressure

increase by threefold or more.

I. INTRODUCTION
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amplitude would

Auditory responses are evoked in human beings and laboratory
animals irradiated with rectangular-puke, modulated microwave
energy [1]–[3]. Most investigators of this phenomena believe that
the response stems from microwave-induced thermoplastic expan-
sion [4]–[8], i.e., when microwave radiation impinges on the head,
a portion of the absorbed energy is converted into heat which
produces a miniscule but rapid rise of temperature in the tissues
of the head. This rise of temperature (-10 ‘c ‘C) occurring in a
very short time (10 ps) generates rapid thermoplastic expansion
of the brain matter or other tissues in the head which then
launches an acoustic wave of pressure that is detected by the hair
cells in the cochlea [9].

This thermoplastic theory which covers many experimental
observations [8]–[ 10], suggests among other characteristics that
the frequency of the auditory signal is a function of the size and
acoustic property of tissues in the head [11]–[12]. Specifically, the
fundamental frequency of sound was found to be given by

&=3.14 v/(3na) (1)

for stress-free surfaces [11]. Thus, the microwave-induced sound

is a function of sound propagation speed (v), and the radius (a)

or circumference (2 ma ) of the head. To date, experimental sup-

port for this observation comes primarily from measured cochlear

microphonics in cats and guinea pigs [10], [13], [14], and the

well-documented requirement for human preception of pulsed

microwaves; i.e., the ability to hear high-frequency sound [ 1]–[3].

However, direct experimental confirmation for the mechanical

resonances inside the head has yet to appear in the literature.

This paper presents direct hydrophore measures of pulsed micro-

wave-induced acoustic signals in variously sized spherical head

models filled with brain-equivalent materials.

II. METHODS AND MATERIALS

A. Models

The spherical models were composed of hemispherical voids

carefully machined in 20.3X20.3X7.6-cm blocks of foamed poly-

styrene and filled with brain-equivalent materials. The foamed

polystyrene provided a stress-free boundary to the brain model.

The electromagnetic, mechanical, and thermal properties of the

brain-equivalent material are similar to brain tissues. It is made

from gelling agent, finely granulated polyethylene powder, sodium

chloride and water [15]. It has a sonic propagation speed of 1600

m/s at room temperature [16]. Typically, two-kilogram batches

of the brain-equivalent material were prepared and then evacuated

for approximately 30 min to remove included air.

R Hydrophore Transducer

A spherical hydrophore, 1 cm in diameter, was used in all

experiments (Edo Western Inc., Model 6600). The barium titanate

piezoelectric element had a response of 50.1 pA/mV for the

range of frequencies encountered in this study. The hydrophore

was placed in the center of the model. Its output signal was

displayed on an oscilloscope and photographed on Polaroid film.

C. Microwave Irradiation Procedure

Pulsed microwave energy at 1.10 GHz and 4-kW peak power

was obtained from an Epsco PG5KB generator. The microwave
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